TAB3, a new binding partner of the protein kinase TAK1.

نویسندگان

  • Peter C F Cheung
  • Angel R Nebreda
  • Philip Cohen
چکیده

We have identified a new binding partner of the TGFbeta (transforming growth factor-beta)-activated protein kinase (TAK1), termed TAB3 (TAK1-binding protein-3), which shares 48% amino acid sequence identity with TAB2. Our results indicate that two distinct TAK1 complexes are present in cells. One comprises TAK1 complexed with TAB1 and TAB2, and the other TAK1 complexed with TAB1 and TAB3. Both complexes are activated in response to tumour necrosis factor-alpha or interleukin-1 in human epithelial KB cells or bacterial lipopolysaccharide in RAW264.7 macrophages, and are subject to feedback control by stress-activated protein kinase 2a (SAPK2a; also called p38alpha). The electrophoretic mobility of TAB2 and TAB3 decreases in response to these agonists or osmotic shock, and is reversed by treatment with protein phosphatase-1. The decrease in mobility of TAB3 is prevented if the cells are incubated with SB 203580 before stimulation, but treatment with SB 203580 produces forms of TAB2 with a mobility intermediate between that observed for TAB2 in unstimulated and stimulated cells. Similar results were obtained in embryonic fibroblasts from mice deficient in SAPK2a/p38alpha. Our results indicate that TAB3 is phosphorylated via the SAPK2a/p38alpha pathway, whereas TAB2 is phosphorylated at two or more sites by both an SAPK2a/p38alpha-dependent and an SB 203580-independent kinase. The SAPK2a/p38alpha-mediated phosphorylation of TAB2 and TAB3 may contribute to the SAPK2a/p38alpha-mediated feedback control of TAK1 activity that also involves the phosphorylation of TAB1. We also show that the agonist-induced activation of TAK1 complexes requires the phosphorylation of the TAK1 catalytic subunit at a serine/threonine residue(s).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TAK1-dependent signaling requires functional interaction with TAB2/TAB3.

Transforming growth factor beta-activated kinase 1 (TAK1), a member of the MAPKKK family, was initially described to play an essential role in the transforming growth factor beta-signaling pathway, but recent evidence has emerged implicating TAK1 in the interleukin (IL)-1 and tumor necrosis factor (TNF) pathways. Notably, two homologous proteins, TAB2 and TAB3, have been identified as adaptors ...

متن کامل

Post-Translational Modifications of the TAK1-TAB Complex

Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family that is activated by growth factors and cytokines such as TGF-β, IL-1β, and TNF-α, and mediates a wide range of biological processes through activation of the nuclear factor-κB (NF-κB) and the mitogen-activated protein (MAP) kinase signaling pathways. ...

متن کامل

Inhibition of autophagy by TAB2 and TAB3.

Autophagic responses are coupled to the activation of the inhibitor of NF-κB kinase (IKK). Here, we report that the essential autophagy mediator Beclin 1 and TGFβ-activated kinase 1 (TAK1)-binding proteins 2 and 3 (TAB2 and TAB3), two upstream activators of the TAK1-IKK signalling axis, constitutively interact with each other via their coiled-coil domains (CCDs). Upon autophagy induction, TAB2 ...

متن کامل

Essential roles of K63-linked polyubiquitin-binding proteins TAB2 and TAB3 in B cell activation via MAPKs.

Polyubiquitination of proteins plays a critical role in the activation of immune cells. K63-linked polyubiquitin-binding proteins TGF-β-activated kinase 1 (TAK1)-binding protein (TAB)2 and TAB3 are implicated in NF-κB signaling via TAK1 activation. However, TAB2 alone is dispensable for NF-κB activation in embryonic fibroblasts, and the functional roles of TAB2 and TAB3 in immune cells has yet ...

متن کامل

Angiogenesis, Metastasis, and the Cellular Microenvironment TAK1–TAB2 Signaling Contributes to Bone Destruction by Breast Carcinoma Cells

Advanced-stage breast cancers frequently metastasize to the bones and cause bone destruction, but the underlying mechanism is not fully understood. This study presents evidence that TGF-b–activated protein kinase 1 (TAK1) signaling in tumor cells promotes bone destruction by metastatic breast carcinoma cells, controlling expression of prometastatic factors including matrix metalloproteinase (MM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Biochemical journal

دوره 378 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2004